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Abstract Given a positive integer M and a real number q > 1, a q-expansion of a
real number x is a sequence (ci ) = c1c2 . . . with (ci ) ∈ {0, . . . , M}∞ such that

x =
∞∑

i=1

ci q
−i .

It is well known that if q ∈ (1, M + 1], then each x ∈ Iq := [0, M/(q − 1)] has a
q-expansion. Let U = U(M) be the set of univoque bases q > 1 for which 1 has a
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unique q-expansion. The main object of this paper is to provide new characterizations
of U and to show that the Hausdorff dimension of the set of numbers x ∈ Iq with
a unique q-expansion changes the most if q “crosses” a univoque base. Denote by
B2 = B2(M) the set of q ∈ (1, M + 1] such that there exist numbers having precisely
two distinct q-expansions. As a by-product of our results, we obtain an answer to a
question of Sidorov (J Number Theory 129:741–754, 2009) and prove that

dimH (B2 ∩ (q ′, q ′ + δ)) > 0 for any δ > 0,

where q ′ = q ′(M) is the Komornik–Loreti constant.

Keywords Univoque bases · Univoque sets · Hausdorff dimensions · Generalized
Thue–Morse sequences

Mathematics Subject Classification 11A63 · 37B10 · 28A78

1 Introduction

Non-integer base expansions have received much attention since the pioneering works
of Rényi [25] and Parry [24]. Given a positive integer M and a real number q ∈
(1, M + 1], a sequence (di ) = d1d2 . . . with digits di ∈ {0, 1, . . . , M} is called a
q-expansion of x or an expansion of x in base q if

x = πq((di )) :=
∞∑

i=1

di

qi
.

It is well known that each x ∈ Iq := [0, M/(q − 1)] has a q-expansion. One such
expansion—the greedy q-expansion—can be obtained by performing the so called
greedy algorithm of Rényi which is defined recursively as follows: if d1, . . . , dn−1 is
already defined (no condition ifn = 1), thendn is the largest element of {0, . . . , M} sat-
isfying

∑n
i=1 di q−i ≤ x . Equivalently, (di ) is the greedy q-expansion of

∑∞
i=1 di q−i

if and only if
∑∞

i=n+1 di q−i+n < 1 whenever dn < M, n = 1, 2, . . .. Hence if
1 < q < r ≤ M + 1, then the greedy q-expansion of a number x ∈ Iq is also the
greedy expansion in base r of a number in Ir .

Let Uq be the univoque set consisting of numbers x ∈ Iq such that x has a unique q-
expansion, and letU ′

q be the set of corresponding expansions. Note that a sequence (ci )

belongs to U ′
q if and only if both the sequences (ci ) and (M − ci ) := (M − c1)(M −

c2) . . . are greedy q-expansions, hence U ′
q ⊆ U ′

r whenever 1 < q < r ≤ M + 1.
Many works are devoted to the univoque sets Uq (see, e.g., [10,11,14]). Recently, de
Vries and Komornik investigated their topological properties in [8]. Komornik et al.
considered their Hausdorff dimension in [19], and showed that the dimension function
D : q �→ dimH Uq behaves like aDevil’s staircase on (1, M+1]. Formore information
on the univoque set Uq we refer to the survey paper [15] and the references therein.

There is an intimate connection between the set Uq and the set of univoque bases
U = U(M) consisting of numbers q > 1 such that 1 has a unique q-expansion over
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the alphabet {0, 1, . . . , M}. For instance, it was shown in [8] that Uq is closed if and
only if q does not belong to the set U . It is well-known that U is a Lebesgue null set of
full Hausdorff dimension (cf. [6,12,19]). Moreover, the smallest element of U is the
Komornik–Loreti constant (cf. [16,17])

q ′ = q ′(M),

while the largest element of U is (of course) M + 1. Recently, Komornik and Loreti
showed in [18] that its closure U is a Cantor set (see also, [9]), i.e., a nonempty closed
set having neither isolated nor interior points. Writing the open set (1, M + 1]\U =
(1, M + 1)\U as the disjoint union of its connected components, i.e.,

(1, M + 1]\U = (1, q ′) ∪
⋃ (

q0, q∗
0

)
, (1)

the left endpoints q0 in (1) run over the whole set U\U , and the right endpoints q∗
0 run

through a subset of U (cf. [8]). Furthermore, each left endpoint q0 is algebraic, while
each right endpoint q∗

0 ∈ U is transcendental (cf. [20]).
De Vries showed in [7], roughly speaking, that the sets U ′

q change the most if we
cross a univoque base. More precisely, it was shown that q ∈ U if and only if U ′

r\U ′
q

is uncountable for each r ∈ (q, M + 1] and r ∈ U if and only if U ′
r\U ′

q is uncountable
for each q ∈ (1, r).

The main object of this paper is to provide similar characterizations of U and
U in terms of the Hausdorff dimension of the sets U ′

r\U ′
q after a natural projection.

Furthermore, we characterize the setsU andU by looking at the Hausdorff dimensions
of U and U locally.

Theorem 1.1 Let q ∈ (1, M + 1]. The following statements are equivalent.

(i) q ∈ U .
(ii) dimH πM+1(U ′

r\U ′
q) > 0 for any r ∈ (q, M + 1].

(iii) dimH U ∩ (q, r) > 0 for any r ∈ (q, M + 1].
Theorem 1.2 Let q ∈ (1, M + 1]. The following statements are equivalent.

(i) q ∈ U\(⋃ {
q∗
0

} ∪ {
q ′}).

(ii) dimH πM+1(U ′
q\U ′

p) > 0 for any p ∈ (1, q).
(iii) dimH U ∩ (p, q) > 0 for any p ∈ (1, q).

It follows at once from Theorems 1.1 and 1.2 that U (or, equivalently, U) does not
contain isolated points.

We remark that the projection map πM+1 in Theorem 1.1 (ii) can be replaced by
πρ for any r ≤ ρ ≤ M + 1. Similarly, the projection map πM+1 in Theorem 1.2 (ii)
can also be replaced by πρ with q ≤ ρ ≤ M + 1. We also point out that Theorems 1.1
and 1.2 strengthen the main result of [7] where the cardinality of the sets U ′

q\U ′
p with

1 < p < q ≤ M + 1 was determined.
Let B2 be the set of bases q ∈ (1, M + 1] for which there exists a number x ∈

[0, M/(q−1)] having exactly two q-expansions. It was asked by Sidorov [26] whether
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dimH B2 ∩ (q ′, q ′ + δ) > 0 for any δ > 0, where q ′ is the Komornik–Loreti constant.
Since U ⊆ B2 (see [26, Lemma 3.1]1), Theorem 1.1 answers this question in the
affirmative.

Corollary 1 dimH B2 ∩ (q ′, q ′ + δ) > 0 for any δ > 0.

The rest of the paper is arranged as follows. In Sect. 2 we recall some properties of
unique q-expansions. The proof of Theorems 1.1 and 1.2 will be given in Sect. 3.

2 Preliminaries

In this section we recall some properties of the univoque set Uq . Throughout this
paper, a sequence (di ) = d1d2 . . . is an element of {0, . . . , M}∞ with each digit di

belonging to the alphabet {0, . . . , M}. Moreover, for a word c = c1 . . . cn we mean a
finite string of digits with each digit ci from {0, . . . , M}. For two words c = c1 . . . cn

and d = d1 . . . dm we denote by cd = c1 . . . cnd1 . . . dm the concatenation of the two
words. For an integer k ≥ 1 we denote by ck the k-times concatenation of c with itself,
and by c∞ the infinite repetition of c.

For a sequence (di ) we denote its reflection by (di ) := (M − d1)(M − d2) . . ..
Accordingly, for a word c = c1 . . . cn we denote its reflection by c := (M −
c1) . . . (M − cn). If cn < M we denote by c+ := c1 . . . cn−1(cn + 1). If cn > 0
we write c− := c1 . . . cn−1(cn − 1).

We will use systematically the lexicographic ordering <,≤,> and ≥ between
sequences and between words. For two sequences (ci ), (di ) ∈ {0, 1, . . . , M}∞ we say
that (ci ) < (di ) if there exists an integer n ≥ 1 such that c1 . . . cn−1 = d1 . . . dn−1 and
cn < dn . Furthermore, we write (ci ) ≤ (di ) if (ci ) < (di ) or (ci ) = (di ). Similarly, we
say (ci ) > (di ) if (di ) < (ci ), and (ci ) ≥ (di ) if (di ) ≤ (ci ). We extend this definition
to words in the obvious way. For example, for two words c and d we write c < d if
c0∞ < d0∞.

A sequence is called finite if it has a last nonzero element. Otherwise it is called
infinite. So 0∞ := 00 . . . is considered to be infinite. For q ∈ (1, M + 1] we denote
by

α(q) = (αi (q))

the quasi-greedy q-expansion of 1 (cf. [5]), i.e., the lexicographically largest infinite
q-expansion of 1. Let β(q) = (βi (q)) be the greedy q-expansion of 1 (cf. [24]), i.e.,
the lexicographically largest q-expansion of 1. For convenience, we set α(1) = 0∞
and β(1) = 10∞, even though α(1) is not a 1-expansion of 1.

Moreover, we endow the set {0, . . . , M} with the discrete topology and the set of
all possible sequences {0, 1, . . . , M}∞ with the Tychonoff product topology.

The following properties of α(q) and β(q) were established in [24], see also [3].

1 This also follows directly from the observation that q−1 has exactly two q-expansions whenever q ∈ U .
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Lemma 2.1 (i) The map q �→ α(q) is an increasing bijection from [1, M + 1] onto
the set of all infinite sequences (αi ) satisfying

αn+1αn+2 . . . ≤ α1α2 . . . whenever αn < M.

(ii) The map q �→ β(q) is an increasing bijection from [1, M + 1] onto the set of all
sequences (βi ) satisfying

βn+1βn+2 . . . < β1β2 . . . whenever βn < M.

Lemma 2.2 (i) β(q) is infinite if and only if β(q) = α(q).
(ii) If β(q) = β1 . . . βm0∞ with βm > 0, then α(q) = (β1 . . . β−

m )∞.

(iii) The map q �→ α(q) is left-continuous, while the map q �→ β(q) is right-
continuous.

In order to investigate the unique expansions we need the following lexicographic
characterization of U ′

q (cf. [3]).

Lemma 2.3 Let q ∈ (1, M + 1]. Then (di ) ∈ U ′
q if and only if

{
dn+1dn+2 . . . < α1(q)α2(q) . . . whenever dn < M,

dn+1dn+2 . . . > α1(q)α2(q) . . . whenever dn > 0.

Note that q ∈ U if and only if α(q) is the unique q-expansion of 1. Then Lemma 2.3
yields a characterization of U (see also, [11,17]).

Lemma 2.4 Let q ∈ (1, M + 1). Then q ∈ U if and only if α(q) = (αi (q)) satisfies

α(q) < αn+1(q)αn+2(q) . . . < α(q) for all n ≥ 1.

Consider a connected component (q0, q∗
0 ) of (q ′, M + 1)\U as in (1). Then there

exists a (unique) word t = t1 . . . tp such that (cf. [8,20])

α(q0) = t∞ and α
(
q∗
0

) = lim
n→∞ gn(t),

where gn = g ◦ · · · ◦ g︸ ︷︷ ︸
n

denotes the n-fold composition of g with itself, and

g(c) := c+c+ for any word c = c1 . . . ck with ck < M. (2)

We point out that theword t = t1 . . . tp in the definitions ofα(q0) andα(q∗
0 ) is called an

admissible block in [20, Definition 2.1] which satisfies the following lexicographical
inequalities: tp < M and for any 1 ≤ i ≤ p we have

t1 . . . tp ≤ ti . . . tpt1 . . . ti−1 and ti . . . tp t1 . . . ti−1 ≤ t1 . . . t+p .
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We alsomention that the limit limn→∞ gn(t) stands for the infinite sequence beginning
with t+t t+t+ t+t t+t . . . , and the existence of this limit was shown by Allouche [2].

In this case (q0, q∗
0 ) is called the connected component generated by t. The closed

interval [q0, q∗
0 ] is the so called admissible interval generated by t (see [20, Definition

2.4]). Furthermore, the sequence

α
(
q∗
0

) = lim
n→∞ gn(t) = t+ t t+ t+ t+ t t+ t . . .

is a generalized Thue–Morse sequence (cf. [20, Definition 2.2], see also [1]).
The following lemma for the generalized Thue–Morse sequence α(q∗

0 ) was estab-
lished in [20, Lemma 4.2].

Lemma 2.5 Let (q0, q∗
0 ) ⊂ (q ′, M + 1)\U be a connected component generated by

t1 . . . tp. Then the sequence (θi ) = α(q∗
0 ) satisfies

θ1 . . . θ2n p−i < θi+1 . . . θ2n p ≤ θ1 . . . θ2n p−i

for any n ≥ 0 and any 0 ≤ i < 2n p.

Finally, we recall some topological properties of U and U which were essentially
established in [8,18] (see also, [9]).

Lemma 2.6 (i) If q ∈ U , then there exists a decreasing sequence (rn) of elements in⋃ {
q∗
0

}
that converges to q as n → ∞;

(ii) If q ∈ U\(⋃ {
q∗
0

} ∪ {
q ′}), then there exists an increasing sequence (pn) of

elements in
⋃ {

q∗
0

}
that converges to q as n → ∞.

We remark here that the bases q∗
0 are called de Vries–Komornik numbers which

were shown to be transcendental in [20]. By Lemma 2.6 it follows that the set of de
Vries–Komornik numbers is dense in U .

3 Proofs of Theorems 1.1 and 1.2

3.1 Proof of Theorem 1.1 for (i) ⇔ (ii).

For each connected component (q0, q∗
0 ) of (q ′, M + 1)\U we construct a sequence of

bases (rn) in U strictly decreasing to q∗
0 .

Lemma 3.1 Let (q0, q∗
0 ) ⊂ (q ′, M + 1)\U be a connected component generated by

t1 . . . tp, and let (θi ) = α(q∗
0 ). Then for each n ≥ 1, the number rn ∈ U determined

by

α(rn) = β(rn) = θ1 . . . θ2n p
(
θ2n p+1 . . . θ2n+1 p

)∞
,

belongs to U . Furthermore, (rn) is a strictly decreasing sequence that converges to
q∗
0 .
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Proof Using (2) one may verify that the sequence (θi ) satisfies

θ2n p+k = θk for all 1 ≤ k < 2n p; θ2n+1 p = θ2n p
+

for all n ≥ 0. Now fix n ≥ 1. We claim that

σ i (
θ1 . . . θ2n p(θ2n p+1 . . . θ2n+1 p)

∞)
< θ1 . . . θ2n p(θ2n p+1 . . . θ2n+1 p)

∞ (3)

for all i ≥ 1, where σ is the left shift on {0, . . . , M}∞ defined by σ((ci )) = (ci+1).
By periodicity it suffices to prove (3) for 0 < i < 2n+1 p. We distinguish between the
following three cases: (I) 0 < i < 2n p; (II) i = 2n p; (III) 2n p < i < 2n+1 p.

Case (I). 0 < i < 2n p. Then by Lemma 2.5 it follows that

θi+1 . . . θ2n p ≤ θ1 . . . θ2n p−i

and

θ2n p+1 . . . θ2n p+i = θ1 . . . θi < θ2n p−i+1 . . . θ2n p.

This implies (3) for 0 < i < 2n p.
Case (II). i = 2n p. Note by [17] that α1(q ′) = [M/2] + 1 (see also, [4]), where

[y] denotes the integer part of a real number y. Then by using q∗
0 > q ′ in Lemma 2.1

we have

θ1 = α1
(
q∗
0

) ≥ α1(q
′) > α1(q ′) ≥ θ1.

This, together with n ≥ 1, implies

θ2n p+1 . . . θ2n+1 p = θ1 . . . θ2n p
+ < θ1 . . . θ2n p.

So, (3) holds true for i = 2n p.
Case (III). 2n p < i < 2n+1 p. Write j = i − 2n p. Then 0 < j < 2n p. Once again,

we infer from Lemma 2.5 that

θi+1 . . . θ2n+1 p = θ j+1 . . . θ2n p
+ ≤ θ1 . . . θ2n p− j

and

θ2n p+1 . . . θ2n p+ j = θ1 . . . θ j < θ2n p− j+1 . . . θ2n p.

This yields (3) for 2n p < i < 2n+1 p.
Note by Lemma 2.5 that

σ i (
θ1 . . . θ2n p(θ2n p+1 . . . θ2n+1 p)

∞)
> θ1 . . . θ2n p(θ2n p+1 . . . θ2n+1 p)

∞
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for any i ≥ 0. Then by (3) and Lemma 2.4 it follows that there exists rn ∈ U such that

α(rn) = β(rn) = θ1 . . . θ2n p(θ2n p+1 . . . θ2n+1 p)
∞.

In the following we prove rn ↘ q∗
0 as n → ∞. For n ≥ 1 we observe that

β(rn+1) = θ1 . . . θ2n+1 p(θ2n+1 p+1 . . . θ2n+2 p)
∞

= θ1 . . . θ2n pθ1 . . . θ2n p
+θ1 . . . θ2n p . . .

< θ1 . . . θ2n p

(
θ1 . . . θ2n p

+)∞ = β(rn).

Then by Lemma 2.1 (ii) we have rn+1 < rn . Note that β(q∗
0 ) = α(q∗

0 ) = (θi ), and

β(rn) → (θi ) = β
(
q∗
0

)
as n → ∞.

Hence, we conclude from Lemma 2.2 (iii) that rn ↘ q∗
0 as n → ∞. ��

Lemma 3.2 Let (q0, q∗
0 ) ⊂ (q ′, M + 1)\U be a connected component generated by

t1 . . . tp, and let (θi ) = α(q∗
0 ). Then for any n ≥ 1 and any 0 ≤ i < 2n p we have

θ1 . . . θ2n+1 p−i < σ i (ξnξn) < θ1 . . . θ2n+1 p−i ,

θ1 . . . θ2n+1 p−i < σ i (ξnξ
−
n ) ≤ θ1 . . . θ2n+1 p−i , (4)

θ1 . . . θ2n+1 p−i < σ i (ξ−
n ξn) < θ1 . . . θ2n+1 p−i ,

and thus (by symmetry),

θ1 . . . θ2n+1 p−i < σ i (ξnξn) < θ1 . . . θ2n+1 p−i ,

θ1 . . . θ2n+1 p−i ≤ σ i (ξnξ
−
n ) < θ1 . . . θ2n+1 p−i ,

θ1 . . . θ2n+1 p−i < σ i (ξ−
n ξn) < θ1 . . . θ2n+1 p−i ,

where ξn := θ1 . . . θ2n p.

Proof By symmetry it suffices to prove (4).

Note that ξnξn = θ1 . . . θ−
2n+1 p

and ξnξ−
n = θ1 . . . θ2n+1 p. Then by Lemma 2.5 it

follows that

θ1 . . . θ2n+1 p−i < σ i (ξnξn) < θ1 . . . θ2n+1 p−i

and

θ1 . . . θ2n+1 p−i < σ i (ξnξ−
n ) ≤ θ1 . . . θ2n+1 p−i

for any 0 ≤ i < 2n p.
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So, it suffices to prove the inequalities

θ1 . . . θ2n+1 p−i < σ i (θ1 . . . θ−
2n pθ1 . . . θ2n p) < θ1 . . . θ2n+1 p−i (5)

for any 0 ≤ i < 2n p. By Lemma 2.5 it follows that for any 0 ≤ i < 2n p we have

θ1 . . . θ2n p−i ≤ θi+1 . . . θ−
2n p < θ1 . . . θ2n p−i

and

θ1 . . . θi > θ2n p−i+1 . . . θ2n p.

This proves (5). ��
Lemma 3.3 Let (q0, q∗

0 ) ⊂ (q ′, M + 1)\U be a connected component generated by
t1 . . . tp. Then dimH πM+1(U ′

r\U ′
q∗
0
) > 0 for any r ∈ (q∗

0 , M + 1].

Proof Take r ∈ (q∗
0 , M + 1]. By Lemma 3.1 there exists n ≥ 1 such that

rn ∈ (
q∗
0 , r

) ∩ U .

Write (θi ) = α(q∗
0 ) and let ξn = θ1 . . . θ2n p. Denote by X (n)

A the subshift of finite type

over the states
{
ξn, ξ

−
n , ξn, ξ−

n

}
with adjacency matrix

A =

⎛

⎜⎜⎝

0 0 1 1
1 0 0 0
1 1 0 0
0 0 1 0

⎞

⎟⎟⎠ .

Note that α(rn) = θ1 . . . θ2n p(θ2n p+1 . . . θ2n+1 p)
∞. Then by Lemmas 3.2 and 2.3 it

follows that
X (n)

A ⊆ U ′
rn

⊆ U ′
r . (6)

Furthermore, note that

ξnξ−
n (ξnξn)

3 = θ1 . . . θ2n+1 p

(
θ1 . . . θ2n+1 p

+)3

= θ1 . . . θ2n+2 p

(
θ1 . . . θ2n+1 p

+)2

> θ1 . . . θ2n+2 pθ1 . . . θ2n+1 pθ2n+1 p+1 . . . θ2n+2 p
+

= θ1 . . . θ2n+2 pθ2n+2 p+1 . . . θ2n+3 p.

Then by Lemmas 2.3 and 3.1 it follows that any sequence starting at

c := ξ−
n ξnξ

−
n (ξnξn)3
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can not belong to U ′
rn+2

. Therefore, by (6) we obtain

X (n)
A (c) :=

{
(di ) ∈ X (n)

A : d1 . . . d(2n+3+2n)p = c
}

⊆ X (n)
A \U ′

rn+2
⊂ U ′

r\U ′
q∗
0
. (7)

Note that the subshift of finite type X (n)
A is irreducible (cf. [22]), and the image

πM+1(X (n)
A ) is a graph-directed set satisfying the open set condition (cf. [23]). Then

by (7) it follows that

dimH πM+1

(
U ′

r\U ′
q∗
0

)
≥ dimH πM+1(X (n)

A (c))

= dimH πM+1(X (n)
A ) =

log
(
(1 + √

5)/2
)

2n p log(M + 1)
> 0.

��
The following lemma can be shown in a way which resembles closely the analysis

in [21, pp. 2829–2830]. For the sake of completeness we include a sketch of its proof.

Lemma 3.4 Let (q0, q∗
0 ) ⊂ (q ′, M + 1)\U be a connected component. Then

dimH πM+1(U ′
q∗
0
\U ′

q0) = 0.

Proof (Sketch of the proof) Suppose that (q0, q∗
0 ) is a connected component generated

by t = t1 . . . tp. Then

α(q0) = t∞ and α
(
q∗
0

) = lim
n→∞ gn(t) = t+ t t+ t+ . . . , (8)

where g(·) is defined in (2).
For n ≥ 0 letωn := gn(t)+. Take (di ) ∈ U ′

q∗
0
\U ′

q0 . Then by using (8) andLemma2.3
it follows that there exists m ≥ 1 such that

t∞ = α(q0) ≤ dm+1dm+2 . . . < α
(
q∗
0

) = t+t . . . , (9)

or symmetrically,

t∞ = α(q0) ≤ dm+1dm+2 . . . < α
(
q∗
0

) = t+t . . . . (10)

Suppose (dm+i ) �= t∞ and (dm+i ) �= t∞. Then there exists u ≥ m such that

du+1 . . . du+p = t+ = ω0 or du+1 . . . du+p = t+ = ω0.

– If du+1 . . . du+p = ω0 = t+, then by (9) and Lemma 2.3 it follows that

du+p+1 . . . du+2p = t+ or du+p+1 . . . du+2p = t.

This implies du+1 . . . du+2p = t+t+ = ω0 ω0 or du+1 . . . du+2p = t+t = ω1.
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– If du+1 . . . du+p = ω0 = t+, then by (10) and Lemma 2.3 it follows that

du+p+1 . . . du+2p = t+ or du+p+1 . . . du+2p = t.

This yields that du+1 . . . du+2p = ω0 ω0 or du+1 . . . du+2p = ω1.

Note that for each n ≥ 0 the word gn(t)+ gn(t) is a prefix of α(q∗
0 ). By iteration of the

above arguments, one can show that if dv+1 . . . dv+2n p = ωn , then dv+1 . . . dv+2n+1 p =
ωnωn or ωn+1. Symmetrically, if dv+1 . . . dv+2n p = ωn , then dv+1 . . . dv+2n+1 p =
ωnωn or ωn+1.

Hence, we conclude that (di ) must end with

t∗(ωi0ωi0)
∗(ωi0ω j0)

s0(ωi1ωi1)
∗(ωi1ω j1)

s1 . . . (ωin ωin )
∗(ωin ω jn )

sn . . .

or its reflections, where sn ∈ {0, 1} and

0 = i0 < j0 ≤ i1 < j1 ≤ i2 < · · · ≤ in < jn ≤ in+1 < · · · .

Here ∗ is an element of the set {0, 1, 2, . . .} ∪ {∞}.
Since the length of ωn = gn(t)+ grows exponentially fast as n → ∞, we conclude

that dimH πM+1(U ′
q∗
0
\U ′

q0) = 0. ��
Proof of Theorem 1.1 for (i) ⇔ (ii) First we prove (i) ⇒ (ii). If q = q∗

0 is the right
endpoint of a connected component of (q ′, M + 1)\U , then by Lemma 3.3 we have

dimH πM+1(U ′
r\U ′

q) > 0 for any r ∈ (q, M + 1].

Clearly, it is trivial when q = M + 1. Now we take q ∈ (U\ {M + 1})\⋃ {
q∗
0

}
and

take r ∈ (q, M + 1]. By Lemma 2.6 (i) one can find q∗
0 ∈ (q, r), and therefore by

Lemma 3.3 we obtain

dimH πM+1

(
U ′

r\U ′
q

)
≥ dimH πM+1

(
U ′

r\U ′
q∗
0

)
> 0.

Now we prove (ii) ⇒ (i). Take q ∈ (1, M + 1]\U . We will show that
dimH πM+1(U ′

r\U ′
q) = 0 for some r ∈ (q, M + 1]. Note that ⋃ {q0} = U\U . Then

by (1) it follows that

q ∈ (1, q ′) ∪
⋃[

q0, q∗
0

)
.

Therefore, it suffices to prove dimH πM+1(U ′
r\U ′

q) = 0 for some r ∈ (q, M + 1]. We
distinct the following two cases.

Case (I). q ∈ (1, q ′). Then for any r ∈ (q, q ′) we have

dimH πM+1(U ′
r\U ′

q) ≤ dimH πM+1(U ′
r ) = 0,

where the last equality follows by [21, Theorem 4.6] (see also [4,14]).
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Case (II). q ∈ [q0, q∗
0 ). Then for any r ∈ (q, q∗

0 ) we have by Lemma 3.4 that

dimH πM+1

(
U ′

r\U ′
q

)
≤ dimH πM+1

(
U ′

q∗
0
\U ′

q0

)
= 0.

��

3.2 Proof of Theorem 1.1 for (i) ⇔ (iii)

The following property for the Hausdorff dimension is well-known (cf. [13, Proposi-
tion 2.3]).

Lemma 3.5 Let f : (X, d1) → (Y, d2) be a map between two metric spaces . If there
exist constants C > 0 and λ > 0 such that

d2( f (x), f (y)) ≤ Cd1(x, y)λ

for any x, y ∈ X, then dimH X ≥ λ dimH f (X).

Lemma 3.6 Let q ∈ U\ {M + 1}. Then for any r ∈ (q, M + 1) we have

dimH U ∩ (q, r) ≥ dimH πM+1 ({α(p) : p ∈ U ∩ (q, r)}) .

Proof Fix q ∈ U\ {M + 1} and r ∈ (q, M +1). Then Lemma 2.6 yields thatU∩(q, r)

contains infinitely many elements. Take p1, p2 ∈ U ∩ (q, r) with p1 < p2. Then by
Lemma 2.1 we have α(p1) < α(p2). So, there exists n ≥ 1 such that

α1(p1) . . . αn−1(p1) = α1(p2) . . . αn−1(p2) and αn(p1) < αn(p2). (11)

This implies

πM+1(α(p2)) − πM+1(α(p1)) =
∞∑

i=1

αi (p2) − αi (p1)

(M + 1)i

≤
∞∑

i=n

M

(M + 1)i
= (M + 1)1−n . (12)

Note that r < M + 1. By Lemma 2.1 we have α(r) < α(M + 1) = M∞. Then
there exists N ≥ 1 such that

α1(r) . . . αN (r) < M . . . M︸ ︷︷ ︸
N

.

Therefore, by (11) and Lemma 2.3 we obtain

n∑

i=1

αi (p2)

pi
1

≥
∞∑

i=1

αi (p1)

pi
1

= 1 =
∞∑

i=1

αi (p2)

pi
2

>

n∑

i=1

αi (p2)

pi
2

+ 1

pn+N
2

.
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Note that p1, p2 are elements of U . Then p2 > p1 ≥ q ′. This implies

1

(M + 1)n+N
<

1

pn+N
2

<

n∑

i=1

(
αi (p2)

pi
1

− αi (p2)

pi
2

)

≤
∞∑

i=1

(
M

pi
1

− M

pi
2

)
= M(p2 − p1)

(p1 − 1)(p2 − 1)
≤ M(p2 − p1)

(q ′ − 1)2
.

Therefore, by (12) it follows that

πM+1(α(p2)) − πM+1(α(p1)) ≤ (M + 1)1−n ≤ (M + 1)2+N

(q ′ − 1)2
(p2 − p1).

Furthermore, by Lemma 2.1 it follows thatπM+1(α(p2))−πM+1(α(p1)) ≥ 0. Hence,
by using

f = πM+1 ◦ α : U ∩ (q, r) → πM+1({α(p) : p ∈ U ∩ (q, r)})

in Lemma 3.5 we establish the lemma. ��
Lemma 3.7 Let (q0, q∗

0 ) be a connected component of (q ′, M +1)\U . Then dimH U∩
(q∗

0 , r) > 0 for any r ∈ (q∗
0 , M + 1].

Proof Suppose that (q0, q∗
0 ) is a connected component generated by t1 . . . tp. Let

(θi ) = α(q∗
0 ). For n ≥ 2 we write ξn = θ1 . . . θ2n p, and denote by

Γ ′
n :=

{
(di ) : d1 . . . d2n+1 p = ξn−1

(
ξn−1

+)3
, (d2n+1 p+i ) ∈ X (n)

A (ξn)
}

.

Here X (n)
A (ξn) is the follower set of ξn in the subshift of finite type X (n)

A defined in (7).
Now we claim that any sequence (di ) ∈ Γ ′

n satisfies

(di ) < σ j ((di )) < (di ) for all j ≥ 1. (13)

Take (di ) ∈ Γ ′
n . Then we deduce by the definition of Γ ′

n that

d1 . . . d2n+1 p+2n−1 p = θ1 . . . θ2n−1 p

(
θ1 . . . θ2n−1 p

+)3
θ1 . . . θ2n p. (14)

We will split the proof of (13) into the following five cases.

(a) 1 ≤ j < 2n−1 p. By (14) and Lemma 2.5 it follows that

θ1 . . . θ2n−1 p− j < d j+1 . . . d2n−1 p = θ j+1 . . . θ2n−1 p ≤ θ1 . . . θ2n−1 p− j ,

and

d2n−1 p+1 . . . d2n−1 p+ j = θ1 . . . θ j < θ2n−1 p− j+1 . . . θ2n−1 p.
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This implies that (13) holds for all 1 ≤ j < 2n−1 p.
(b) 2n−1 p ≤ j < 2n p. Let k = j − 2n−1 p. Then 0 ≤ k < 2n−1 p. Clearly, if k = 0,

then by using θ1 > θ1 and n ≥ 2 it yields that

θ1 . . . θ2n−1 p < d j+1 . . . d2n p = θ1 . . . θ2n−1 p
+ < θ1 . . . θ2n−1 p.

Now we assume 1 ≤ k < 2n−1 p. Then by (14) and Lemma 2.5 it follows that

θ1 . . . θ2n−1 p−k < d j+1 . . . d2n p = θk+1 . . . θ2n−1 p
+ ≤ θ1 . . . θ2n−1 p−k,

and

d2n p+1 . . . d2n p+k = θ1 . . . θk < θ2n−1 p−k+1 . . . θ2n−1 p.

Therefore, (13) holds for all 2n−1 p ≤ j < 2n p.
(c) 2n p ≤ j < 2n p + 2n−1 p. Let k = j − 2n p. Then in a similar way as in Case (b)

one can prove (13).
(d) 2n p + 2n−1 p ≤ j < 2n+1 p. Let k = j − 2n p − 2n−1 p. Again by the same

arguments as in Case (b) we obtain (13).
(e) j ≥ 2n+1 p. Note that

d1 . . . d2n+1 p = θ1 . . . θ2n−1 p

(
θ1 . . . θ2n−1 p

+)3
> θ1 . . . θ2n+1 p.

Then (13) follows by Lemma 3.2.

Therefore, by (13) and Lemma 2.4 it follows that any sequence in Γ ′
n corresponds

to a unique base q ∈ U . Furthermore, by (14) and Lemma 3.1 each sequence (di ) ∈ Γ ′
n

satisfies

α
(
q∗
0

) = (θi ) < (di ) < θ1 . . . θ2n−1 p

(
θ1 . . . θ2n−1 p

+)∞ = α(rn−1).

Then by Lemma 2.1 it follows that

α(q) ∈ Γ ′
n �⇒ q ∈ U ∩ (

q∗
0 , rn−1

)
.

Fix r > q∗
0 . So by Lemma 3.1 there exists a sufficiently large integer n ≥ 2 such that

Γ ′
n ⊂ {

α(q) : q ∈ U ∩ (
q∗
0 , r

)}
. (15)

Note by the proof of Lemma 3.3 that X (n)
A is an irreducible subshift of finite type

over the states
{
ξn, ξ

−
n , ξn, ξ−

n

}
. Hence, by (15) and Lemma 3.6 it follows that

dimH U ∩ (
q∗
0 , r

) ≥ dimH πM+1(Γ
′

n) = dimH πM+1(X (n)
A )

=
log

(
(1 + √

5)/2
)

2n p log(M + 1)
> 0.

��
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Proof of Theorem 1.1 for (i) ⇔ (iii) First we prove (i) ⇒ (iii). Excluding the trivial
case q = M + 1 we take q ∈ U\ {M + 1}. Suppose that r ∈ (q, M + 1]. If q = q∗

0 ,
then by Lemma 3.7 we have dimH U ∩ (q, r) > 0.

If q ∈ (U\ {M + 1})\⋃ {
q∗
0

}
, then by Lemma 2.6 (i) there exists q∗

0 ∈ (q, r). So,
by Lemma 3.7 we have

dimH U ∩ (q, r) ≥ dimH U ∩ (
q∗
0 , r

)
> 0.

Now we prove (iii) ⇒ (i). Suppose on the contrary that q ∈ (1, M + 1]\U . We will
show that U ∩ (q, r) = ∅ for some r ∈ (q, M + 1]. Take q ∈ (1, M + 1]\U . By (1) it
follows that

q ∈ (1, q ′) ∩
⋃

[q0, q∗
0 ).

This implies that U ∩ (q, r) = ∅ for r ∈ (q, M + 1] sufficiently close to q. ��

3.3 Proof of Theorem 1.2

Proof of Theorem 1.2 (i) ⇒ (ii) Take q ∈ U\(⋃ {
q∗
0

} ∪ {
q ′}) and p ∈ (1, q). By

Lemma 2.6 (ii) there exists q∗
0 ∈ (p, q). Hence, by Lemma 3.3 it follows that

dimH πM+1

(
U ′

q\U ′
p

)
≥ dimH πM+1

(
U ′

q\U ′
q∗
0

)
> 0.

(ii) ⇒ (i). Suppose on the contrary that q /∈ U\(⋃ {
q∗
0

} ∪ {
q ′}). Then by (1) we

have

q ∈ (1, q ′] ∪
⋃ (

q0, q∗
0

]
.

By using Lemma 3.4 it follows that for p ∈ (1, q) sufficiently close to q we have
dimH πM+1(U ′

q\U ′
p) = 0.

(i) ⇒ (iii). Take q ∈ U\(⋃ {
q∗
0

} ∪ {
q ′}) and p ∈ (1, q). By Lemma 2.6 (ii) there

exists q∗
0 ∈ (p, q). Hence, by Lemma 3.7 it follows that

dimH U ∩ (p, q) ≥ dimH U ∩ (
q∗
0 , q

)
> 0.

(iii) ⇒ (i). Suppose q /∈ U\(⋃ {
q∗
0

} ∪ {
q ′}). Then by (1) we have q ∈ (1, q ′] ∪⋃

(q0, q∗
0 ]. So, for p ∈ (1, q) sufficiently close to q we have U ∩ (p, q) = ∅. ��
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